Synthetic data: The benefit for better AI models

Data obviously plays a crucial role in companies that are digitizing. But while the demand for high-quality and large amounts of data is increasing, we often encounter challenges such as privacy restrictions and a lack of sufficient data for specialized tasks. This is where the concept of synthetic data emerges as a groundbreaking solution.

Why Synthetic Data?

  1. Privacy and Security: In sectors where privacy is a major concern, such as healthcare or finance, synthetic data offer a way to protect sensitive information. Because the data do not come directly from individuals, the risk of privacy breaches is significantly reduced.
  2. Availability and Diversity: Specific datasets, especially in niche areas, can be scarce. Synthetic data can fill these gaps by generating data that would otherwise be difficult to obtain.
  3. Training and Validation: In the world of AI and machine learning, large amounts of data are needed to train models effectively. Synthetic data can be used to expand training datasets and improve the performance of these models.

Applications

  • Healthcare: By creating synthetic patient records, researchers can study disease patterns without using real patient data, thereby ensuring privacy.
  • Autonomous Vehicles: Large amounts of traffic data are needed to test and train self-driving cars. Synthetic data can generate realistic traffic scenarios that help improve the safety and efficiency of these vehicles.
  • Financial Modeling: In the financial sector, synthetic data can be used to simulate market trends and perform risk analyses without revealing sensitive financial information.

Example: A synthetically generated room

Kamer gegenereerd met AIAI gegenereerde kamer met meubelsSynthetische data

Challenges and Considerations

While it offers many advantages, there are also challenges. Ensuring the quality and accuracy of this data is crucial. Inaccurate synthetic datasets can lead to misleading results and decisions. Additionally, it is important to find a balance between using synthetic data and real data to get a complete and accurate picture. Furthermore, synthetic data can be used to reduce imbalances (BIAS) in a dataset. Large language models use generated data because they have simply already read the Internet and need even more training data to improve.

Conclusion

Synthetic data are a promising development in the world of data analysis and machine learning. They offer a solution to privacy issues, improve data availability, and are invaluable for training advanced algorithms. As we further develop and integrate this technology, it is essential to ensure the quality and integrity of the data so that we can fully harness the potential of synthetic data.

Need help effectively applying AI? Make use of our consultancy services

Gerard

Gerard

Gerard is active as an AI consultant and manager. With extensive experience at large organizations, he can unravel a problem very quickly and work towards a solution. Combined with an economic background, he ensures business-responsible choices.

AIR (Artificial Intelligence Robot)